
W H I T E PA P E R

A Modern Framework
for Automating Data
Integration
StreamSets Data Integration Self-Service Accelerator

2StreamSets Data Integration Self-Service Accelerator

1	 Introduction
Every organization gathers data, presenting an opportunity for meaningful actions: informed decision-making, problem-solving,
and fostering business growth. Achieving these objectives necessitates the presence of reliable and high-performing data
practices that enjoy trust throughout the organization.

The challenge of timely access to the right data for business analytics can be a major hurdle for companies modelled on a
centralized IT distribution approach. Even the smallest of delays can have a significant impact on competitive advantage.
One way around this is to decentralise the data ingestion process by using standardised patterns and automation. Imagine a
scenario where the business can self-serve the procurement of their data to develop their insights within their timeframes and
capabilities. This white paper describes a framework for delivering such a capability.

Customers often present highly intricate requirements, and while the available technology can meet their needs, the complexity
of the required tools demands a significant level of expertise for successful implementation. StreamSets software stands
out by offering a distinctive combination of graphical and programmatic approaches across the entire platform lifecycle,
encompassing deployment, configuration, design, and pipeline release. This unique feature enables us to establish best practice
implementations, referred to as "patterns," for common scenarios. These patterns provide companies with comprehensive
guidance, including architecture, design, and code samples, thereby reducing risk and accelerating delivery. Crafted by
StreamSets engineers, these patterns consider recurring scenarios encountered during customer interactions, leverage deep
product knowledge, and encompass all core elements necessary for a correct initial implementation. Furthermore, they are
designed to be extensible, allowing customers to tailor them to their specific needs and architectures.

1.1	 StreamSets
StreamSets, a Software AG company, eliminates data integration friction in complex hybrid and multi-cloud environments to
keep pace with “need-it-now” business data demands. Our platform lets data teams unlock data, in a safe and governed way, to
enable a data-driven enterprise. Resilient and repeatable pipelines deliver analytics-ready data that improve real-time decision-
making and reduce the costs and risks associated with data flow across an organisation. That’s why the largest companies in
the world trust StreamSets to power millions of data pipelines for modern analytics, data science, smart applications, and hybrid
integration.

1.2	 Intended Use
This document is intended to be used by a central IT function (aka data platform provider) with responsibility for maintaining
ingestion patterns (i.e., data ingestion types) in conjunction with business unit functions (aka data platform tenant subscribers)
responsible for maintaining job templates (i.e., parameterised data ingestion jobs customized to meet business needs).

It is common for organisations to have relatively simple data movement tasks, which are used for ingestion of data from source
systems into an Analytical platform, be it a data lake or data warehouse (or combination). Other, similar tasks could be the
movement of data between source systems and MDM repositories, or publication of enriched data from data warehouses to
applications. All these data movement tasks are simple enough to implement as one-offs, when the organisation is equipped
with a data ingestion platform providing drag and drop interfaces, but organisations typically have hundreds of these feeds to
implement, manage and execute. And the drag and drop user interfaces themselves, while easy to use by data engineers, are not
really designed for self-service consumption by end-users; this is where StreamSets' automation comes into play, delivering the
self-service experience for the Enterprise needs.

3StreamSets Data Integration Self-Service Accelerator

2	 Framework Overview
In the creation of a sophisticated automated data ingestion capability, our pattern development encompasses key functionalities
tailored to streamline the process. This includes a subscription function to capture and manage requirements effectively,
a scheduling function for seamless process coordination, an orchestration function to efficiently build and manage the
environment, a job runner function for precise delivery execution, and a metadata store that enhances logic intelligence and
provides comprehensive process instrumentation. These elements work in tandem to ensure a robust and automated data
ingestion solution, aligning with the strategic needs of modern businesses.

2.1	 Subscription function
The subscription function is the front end of the pattern process where the business requirements for data provision are
captured and validated. This can be accomplished through a straightforward Excel or spreadsheet method, enhanced as a more
feature-rich website capability, or incorporated into an existing version control system.

It is the responsibility of the Data Subscription function to ensure that the metadata store is populated with the correct values for
downstream scheduling (pattern selection) and downstream orchestration (parametrized job template creation).

2.2	 Scheduling function
The scheduling function identifies new data ingestion requests, triggers the automation process, including ingestion pattern
selection for downstream orchestration processing and if required, establishes a future runtime job schedule. All the details
required to support the scheduling function are stored in the metadata store.

For a basic level of functionality, the StreamSets scheduler can be used to run a regular polling job to scan the metadata store
for new requests. However, it is more likely that organizations will want to integrate the automation process into their scheduling
capability to accommodate more advanced levels of functionality such as data governance compliance, processing order,
exception handling, notifications, and data quality checks.

A modern approach to automating Data Integration

4StreamSets Data Integration Self-Service Accelerator

2.3	 Orchestration function
Invoked by the scheduling function and using the pattern details provided, the orchestration function reads the metadata store to
capture the caller request parameters (i.e., the mandatory and optional values provided during the data subscription phase) and
select the parameterised job template(s) and default runtime settings. The orchestration function uses these details to populate
the job templates, build the pipelines and jobs, and if required, provision the necessary runtime infrastructure for downstream
job runner execution. capture the caller request parameters (i.e., the mandatory and optional values provided during the data
subscription phase) and select the parameterised job template(s) and default runtime settings. The orchestration function
uses these details to populate the job templates, build the pipelines and jobs, and if required, provision the necessary runtime
infrastructure for downstream job runner execution.

2.4	 Job Runner function
Using the StreamSets environment, the Job Runner function runs the automatically orchestrated pipelines and jobs to read the
required data from the source, apply the required transformations, and write to the required destination. To meet operational
support requirements, runtime events and statistics are written to the metadata store.

2.5	 Metadata Store function
The metadata store provides an organised information repository that enables scalable pattern complexity and ease of
integration into already established data platforms. The following data model has been provided as an organisational example
that minimises the duplication of pattern types and paramatised job templates.

Reference Appendix A1 for table details and examples.

Typically, a central platform team will be responsible for maintaining the ingestion patterns whereas job templates will be filled in
by individual tenants which in turn will be agreed upon in consultation with the platform team. A system automation will manage
the job instance (holding the job run and audit details) and the relationship between ingestion patterns and job templates.

5StreamSets Data Integration Self-Service Accelerator

3	 Proof of Concept Example
This PoC provides an example of how to use the StreamSets Platform SDK to parameterize and start Job Template instances
based on parameters retrieved from a database table. The source code and files to the PoC can be found here in the GitHub
repository.

3.1	 Behold, a guided stroll through the process!
In this example:

•	 A Data Analyst submits a request to run a Job to an app that makes REST API calls to the Job-Template-Service,
or a scheduler like Apache Airflow uses Python bindings to directly call the Python Job Template Runner script.

•	 The Job Template that is run is dynamically selected based on rules applied to the request's source-type and target-type
values.

•	 A subset of the Job's runtime parameters are passed in by the caller as part of the request, which we can consider as
"dynamic" runtime parameters, and additional pipeline and connection parameters are retrieved from the configuration
store, which we can consider as "static" runtime parameters.

•	 A Python application built using the StreamSets SDK selects the appropriate Job Template and retrieves the Job Tem-
plate configuration and static parameters from a set of database tables.

•	 The Python Application creates and starts Job Template Instance(s) that StreamSets Control Hub schedules on engines.

•	 The Python Application spawns a new thread per Job Template Instance, and each thread waits until its instance com-
pletes, then gathers the instance metrics, and inserts the metrics into a database table.

Data Analyst

Read Job Template Config

Start Job Template Instances

Write Job Metrics

StreamSets SDK
(Python)

Databasejob-metrics
table

job-template-config
table

1

1

3

3

2

2

Start Job

Start Job

https://docs.streamsets.com/platform-sdk/latest/index.html
https://github.com/streamsets/data-integration-patterns

6StreamSets Data Integration Self-Service Accelerator

3.2	 Prerequisites
In this example, the following components are required:

•	 A PostgreSQL database

•	 Python 3.8+

•	 Psycopg - PostgreSQL database adapter for Python

•	 Flask - Python web application framework

•	 StreamSets Platform SDK for Python v6.0.1+

•	 StreamSets Platform API Credentials for a user with permissions to start Jobs

The following is an example Cloud environment used to develop a pattern framework.

https://pypi.org/project/psycopg2/
https://pypi.org/project/Flask/
https://docs.streamsets.com/portal/platform-controlhub/controlhub/UserGuide/OrganizationSecurity/APICredentials_title.html#concept_vpm_p32_qqb

7StreamSets Data Integration Self-Service Accelerator

3.3	 The Nuts and Bolts Unveiling - Implementation details
In this example:

1.	 The caller’s input requirements are posted as a JSON payload to a REST API service provided by Flask, a lightweight web
framework for building applications in Python. Runtime parameters are captured as dynamic values passed by the user
(i.e., HTTP_URL, “GCS_Bucket”) and as static values pre-defined and referenced from the metadata store (i.e., “HTTP_Meth-
od”, “HTTP_Mode”, “GCS_Connection”).

2.	 The REST API endpoint calls a “run_job_template” method in the Python file “ job_template_runner.py”. The type of job tem-
plate selected is pre-defined in the metadata store using the caller provided source and target values.

3.	 Interaction with the StreamSets Platform is managed by the class “StreamSetsManager” in the Python file “streamsets_
manager.py”.

4.	 Interaction with the database is managed by the class “DatabaseManager” in the Python file “database_manager.py”.

REST API Service Call

StreamSets
SDK (python)

Job_template_service_py

Job_template_config Job_metrics

Job_template_runner_py

streamsets_manager_py

database_manager_py

Data Collector2

3

4

1

Platform
Contol Hub

3.4	 Configuration and runtime details
Please reference the GitHub repository for details: https://github.com/streamsets/data-integration-patterns

https://github.com/streamsets/data-integration-patterns

8StreamSets Data Integration Self-Service Accelerator

4	 Different Approaches to Implementation
Exploring alternative avenues for deploying this framework (such as utilizing an SDK or other automation methods) and
examining the flexibility of parameter application are dimensions to consider.

4.1	 Basic Pattern
A pattern implementation in its simplest form (i.e., with minimal IT platform integration requirements) is achieved using a REST
API data subscription front end where the callers’ requirements are submitted at the command line level. This does place an
emphasis on the caller submitting a correctly formatted input but removes the more time and resource consuming requirement
to develop a new or integrate with an existing front-end system (i.e., web portal, GitLab service, etc.).

Post data ingestion request, the caller inquires upon the metadata store to determine job status and outcome.

4.2	 Optimized Pattern
With an automated pattern capability established, further step improvements can be introduced to simplify the customer
experience and expand the scope of ingestion scenarios, such as.

•	 The addition of a drop-down selection menu for patterns and parameters (i.e., subscribing to a webforms provider or capa-
bility that takes the callers input using drop down menu selection and submits their request in a REST API format).

•	 Reducing the number of caller parameter selection requirements by aligning predetermined settings to department level
defaults.

•	 Expanding the metadata store with a wider range of caller request templates.

D a t a I n g e s t i o n A u t o m a t i o n P a t t e r n

© 2024 Software AG. All rights reserved. 11

Classification : Internal - All Employeesㅤㅤㅤㅤ

4 Different Approaches to Implementation

Exploring alternative avenues for deploying this framework (such as utilizing an SDK or other
automation methods) and examining the flexibility of parameter application are dimensions to
consider.

4.1 Basic Pattern

A pattern implementation in its simplest form (i.e., with minimal IT platform integration
requirements) is achieved using a REST API data subscription front end where the callers’
requirements are submitted at the command line level. This does place an emphasis on the
caller submitting a correctly formatted input but removes the more time and resource
consuming requirement to develop a new or integrate with an existing front-end system (i.e.,
web portal, GitLab service, etc.).

Post data ingestion request, the caller inquires upon the metadata store to determine job status
and outcome.

4.2 Optimized Pattern

With an automated pattern capability established, further step improvements can be introduced
to simplify the customer experience and expand the scope of ingestion scenarios, such as.

• The addition of a drop-down selection menu for patterns and parameters (i.e.,
subscribing to a webforms provider or capability that takes the callers input using drop
down menu selection and submits their request in a REST API format)

• Reducing the number of caller parameter selection requirements by aligning
predetermined settings to department level defaults.

9StreamSets Data Integration Self-Service Accelerator

4.3	 Advanced Pattern
With the addition of data lineage and chatbot technology, it is not inconceivable that data analysts could reach their data
ingestion outcomes using free form data inquires and metadata store guided intelligence.

Other considerations could include:

•	 Improved logging, auditing, monitoring, and error handling

•	 Improved security and access control

•	 Improved scalability and maintenance support

The application of this pattern is suitable for various scenarios, including migration to the cloud, data ingestion into a data
lake, and data ingestion into a staging area in a data warehouse. Attempting these tasks without the proper conditions poses
challenges, such as dealing with numerous feeds, extensive manual efforts, and the risk of losing control and visibility over the
process.

10StreamSets Data Integration Self-Service Accelerator

5	 Customer Case: A Large Energy Company

5.1	 Overview and Challenges
To expedite insights for the analyst community and minimize IT costs, A large energy tech pioneer sought a platform capable
of automating data collection to a public cloud for processing. The challenge was to make this data accessible to diverse
applications serving groups with distinct analytic needs without duplicating data storage. Due to the extensive volume and
diversity of data, a one-size-fits-all approach to data management and processing proved impractical.

The system handled a substantial daily data load, reaching billions of records from systems spanning Billing, Customer Identity,
Payments, Industry data, Metering, Pricing/Markets, Forecasting, and Regulatory categories. The data originated from various
technologies like Oracle, Postgres, SQL Server, S3, flat files, and APIs. Simultaneously, there was an ongoing effort to migrate
data and workloads from the existing SQL Server infrastructure to enhance efficiency and accommodate evolving requirements.

The objective was to establish a secure, multitenant architecture facilitating self-service data access and the ability to transform
data into formats required by data scientists.

5.2	 Solution
StreamSets facilitated the ingestion of data into cloud data warehouses, specifically Snowflake and Databricks, as well as the
egress of data from the cloud to SQL Server and other existing legacy systems. The implementation of StreamSets involves
the utilization of 'pipelines as code,' enabling streamlined operations with minimal maintenance requirements. The platform
supports a diverse array of use cases and can accommodate a substantial workload, handling up to 1000 jobs per day, with the
potential for growth, particularly during peak periods like month-end processes.

5.3	 Result
The implementation of StreamSets has yielded significant outcomes, ensuring a dependable daily provisioning of data to over
400 users, addressing their analytic needs effectively. This has resulted in a notable reduction in the time required for the analyst
community to deliver new assets, simultaneously lowering the entry bar for technical proficiency among analysts. The platform's
efficiency has further led to a decrease in pressure and expenses for central IT teams, particularly in relation to data pipeline
builds and fixes. With 500 jobs executed daily, StreamSets demonstrates robust performance, ingesting data from 100 different
databases, APIs, and Filesystems, including the ingestion of billions of records from large tables.

The evaluation criteria, encompassing the speed of provisioning necessary components in the cloud, ease of development,
customer support, and the ability to influence product development, showcase StreamSets as a comprehensive solution that
not only meets operational demands but also provides a user-friendly experience with strategic impact.

11StreamSets Data Integration Self-Service Accelerator

A.	 Metadata Store Data Model

A.01 Ingestion Pattern
Ingestion Pattern table that holds the key details for a given ingestion pattern and provides the base definition of the pattern.

Field Name Field Type Description Example

ingestionPatternId (PK) int The is the primary key that will be
auto incremented.

12345

patternName text This field contains the name of the
pattern.

HTTP_To_GCS

source text This field will indicate the source
name.

HTTP

destination text This field will indicate the
destination name.

GCS

createdDateTime timestamp A timestamp to indicate when a
given pattern was created.

2023-11-13 19:10:25-07

12StreamSets Data Integration Self-Service Accelerator

Field Name Field Type Description Example

jobTemplateId (PK) int The is the primary key that will be
auto incremented.

12345

deleteAfterCompletion Boolean A Boolean field to indicate if the
job instance needs to be deleted
or kept after the execution.

sourceRruntimeParameters text/json This field contains the details
of Source run time parameters
(Static) that will control / define
the execution of the job instance
associated with the template.

{

 "RunTimeParameters":
{

 "ResourceURL":
"https://sample.com/
sample.json",

"HTTPMethod": "GET",

"DataFormat": "JSON"

 }

}

)

DestinationRuntimeParameters text/json This field contains the details
of the destination run time
parameters (Static) that will
control / define the execution of
the job instance associated with
the template.

{

 "RunTimeParameters":
{

 "ResourceURL":
"https://sample.com/
sample.json",

"HTTPMethod": "GET",

"DataFormat": "JSON"

 }

}

)

sourceConnection_info text/json This field will contain the details of
the Source connection that need
to be used for the execution

2023-11-13 19:10:25-07

A.02 Job Template
The Job Template table holds the information on the job definition and the associated parameters and is used to create a job
instance that will perform the data ingestion.

13StreamSets Data Integration Self-Service Accelerator

Field Name Field Type Description Example

destinationConnection_info text/json This field will contain the details
of the Destination connection that
need to be used for the execution

createdDateTime timestamp A timestamp to indicate when a
given pattern was created.

2023-11-13
19:10:25-07

14StreamSets Data Integration Self-Service Accelerator

Field Name Field Type Description Example

jobTemplateId (PK) int The is the primary key that will be
auto incremented.

12345

deleteAfterCompletion Boolean A Boolean field to indicate if the
job instance needs to be deleted
or kept after the execution.

sourceRruntimeParameters text/json This field contains the details
of Source run time parameters
(Static) that will control / define
the execution of the job instance
associated with the template.

{

 "RunTimeParameters":
{

 "ResourceURL":
"https://sample.com/
sample.json",

"HTTPMethod": "GET",

"DataFormat": "JSON"

 }

}

)

DestinationRuntimeParameters text/json This field contains the details
of the destination run time
parameters (Static) that will
control / define the execution of
the job instance associated with
the template.

{

 "RunTimeParameters":
{

 "ResourceURL":
"https://sample.com/
sample.json",

"HTTPMethod": "GET",

"DataFormat": "JSON"

 }

}

)

sourceConnection_info text/json This field will contain the details of
the Source connection that need
to be used for the execution

2023-11-13 19:10:25-07

A.02 Job Template
The Job Template table holds the information on the job definition and the associated parameters and is used to create a job
instance that will perform the data ingestion.

15StreamSets Data Integration Self-Service Accelerator

Field Name Field Type Description Example

relId (PK) int The is the primary key that will be
auto incremented.

12345

ingestionPatternId (FK) int A field to hold the primary key of
the associated ingestion pattern id

jobTemplateID(FK) int A field to hold the primary key of
the associated job template Id.

12345

schedule text A field to hold the details of the
schedule when the jobs will run.
It will store the information in
Cron expression providing detail
of “seconds”, “minutes”, “Hours”,
“Day of Month”, “Month”, “Day of
Week” and “Year” of the execution
(e.g., 0 15 10 ? * * the job will run
every day at 10:15

A.03 Ingestion Pattern & Job Template Relationship
The Ingestion Pattern and Job Template Relationship table holds the relationship between ingestion patterns and the associated
job templates.

16StreamSets Data Integration Self-Service Accelerator

Field Name Field Type Description Example

jobInstanceId (PK) int The is the primary key that will be
auto incremented.

12345

jobRunId int A field to hold the primary key of
the associated ingestion pattern id

jobTemplateID(FK) int A field to hold the primary key of
the associated job template Id.

12345

userId text A field to hold the email of the
user that triggered the job.

prateek@streamsets.com)

engineId text A field to hold the engine id
associated with the job run.

“51712c55-f8f8-4dee-bb86-
5b2112023f0d")

pipelineId text The field to hold the associated
pipeline id.

“f64fa1c8-69fe-4ce3-8a3c-
a7abf7699514:b0550502-
ea35-11eb-a03d-
53c722bc5504"

runStatus Boolean A field to indicate if the run was
successful or not.

1 = successful,

2 = unsuccessful

inputRecCount Int This file will hold the total number
of input records from a given run.

12202020030

outputRecCount Int This file will hold the total number
of output records from a given run.

5656565656

errorMessage text A field to capture any error
message associated with a job
run.

“GCS_09 - Error happened
when writing to Output
stream”

startTime timestamp A timestamp to indicate when a
given job run started.

2023-11-13 19:10:25-07

endTime timestamp A timestamp to indicate when a
given job run completed.

2023-11-13 19:10:25-07

A.04 Job Instance
The Job Instance table holds the information on a particular job instance and other logging information on the job runs.

17

ABOUT SOFTWARE AG
Software AG helps you create effortlessly connected experiences for your customers, employees and partners with an enterprise-grade iPaaS that integrates anything, anywhere, any way you want.
By bringing application, data, API and B2B integration together in the same generative AI-enabled platform, you can run a high-performing enterprise and constantly improve it based on data.
Get end-to-end visibility and governance across geographies, IT environments, and complex business ecosystems, with hybrid multi-cloud connectivity, and enterprise-grade security relied on by the most
powerful banks, governments, and corporations in the world. Trusted by the world’s best brands for more than 50 years, our technology and team of integration enthusiasts will make sure that integration
is a driver of innovation for your enterprise. Ready to make integration really work for you? Now you can. Finally.

Learn more at www.SoftwareAG.com. Follow us on LinkedIn and X.

© 2023 Software AG. All rights reserved. Software AG and all Software AG products are either trademarks or registered trademarks of Software AG.
Other product and company names mentioned herein may be the trademarks of their respective owners.

Take the next step
Contact your Software AG representative or visit us at www.softwareag.com

Learn more

https://www.softwareag.com/en_corporate.html
https://www.linkedin.com/authwall?trk=bf&trkInfo=AQFvUKwWDgxGOAAAAYQTPIRgQfWhP3DbUB6rMqZ4TxMkkLIptYsOzMYVO2w_aD3BUob-n7WZDQ7VL4WJvx7askaE0QdByWZEKGb22YWEDIjj9xqP8vAZ34eJ9UFQMDPM5jEGA6g=&original_referer=&sessionRedirect=https%3A%2F%2Fwww.linkedin.com%2Fcompany%2Fsoftware-ag%2F
https://twitter.com/SoftwareAG
https://www.softwareag.com/en_corporate.html

